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Abstract—The heat flux from a constant temperature hot film mounted flush with the surface of a plane

insulating wall is examined numerically assuming that the thermal boundary layer theory is applicable

everywhere and at all times. The flow field is described by (a) a pulsating or (b) a linearly decelerating two-

dimensional shear flow. For high frequencies of the pulsation the calculated unsteady heat transfer deparis

strongly from the quasi-steady value. In reversing flow a considerable influence of the thermal wake can be

seen. Computations of the time averaged heat flux show that an enhancement of heat transfer due to
superimposed oscillations can only occur in reversing flow.

NOMENCLATURE

Ag, amplitude response;

D, thermal diffusivity [m? s~ 13;

L, length of the hot film [m];

Nu, Nusselt number, al./A;

Nu*, modified Nusselt number, Pe ™ '?Ny;

Pe, Péclet number, §,..I2/D;

Pr, Prandtl number, v/D;

R, radius of the tube [m];

Reyp, Reynolds number, U, 2R/v;

s, S, (dimensionless) velocity gradient at the
wall [s717;

58, {dimensionless) change of the velocity
gradient at the wall [s2];

t, time [s];

T, temperature [K];

To» free stream temperature [K];

Ti hot film temperature {K];

U mean velocity of laminar tube flow
[ms™17;

U free stream velocity [m s~ *];

x X, (dimensionless) coordinate parallel to
the surface [m];

Y, {dimensionless) coordinate normal to
the surface [m].

Greek symbols

a, heat transfer coefficient [Wm™ % K~17];

T, Gamma function;

S, thickness of the thermal boundary
layer [m];

Ax, Ay, Az, steps in the appropriate coordinate
directions;

m similarity variable, y(s/9x)!/3;

0, dimensionless temperature;

2, thermal conductivity [Wm™* K~17;

i, dynamic viscosity [kgm ™' s 1];

t Present address: Lehrstuhl fiir Wirmeiibertragung und
Klimatechnik, Rheinisch-Westfilische Technische Hoch-
schule, Aachen, West Germany.

kinematic viscosity [m2s~'7;
dimensionless time ;
s wall shear stress [N m™~%];

-

falNa

&, phase difference [degrees];
w,Q, {dimensionless) angular frequency
{s™'1.
Subscripts
i,j, k, index for the coordinate directions
X, ¥, T, respectively ;
in, instantaneous;
max, maximum;
min, minimum;
n, edge of boundary layer;
q, quasi-steady;
ref, reference value;
s, steady;
u, unsteady.
Superscripts
o, amplitude ;

s time averaged.

1. INTRODUCTION

IN TWO-DIMENSIONAL steady incompressible flow the
convective heat transfer from a small isothermal heated
film on an insulated wall is (under ideal conditions)
found to be approximately proportional to the one-
third power of the local wall shear stress, 7,. This
relationship was first derived by Lévéque [17 and was
used by Ludwieg [2] for the development of a hot-film
probe for wall shear stress measurements. The one-
third power law holds as long as the heat conduction in
the flow direction is negligible in the thermal boundary
layer that develops over the film, requiring the Péclet
number, Pe = 7,I2/uD, to be large and the thermal end
effects to be small. Furthermore, the thermal boundary
layer has to be confined to the region next to the wall
where the velocity field can be approximated by a linear
shear profile.
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For given fluid properties the local wall shear in an
incompressible steady boundary layer depends only on
the shape of the boundary and the {ree stream velocity,
Uy, (For a flat plate boundary layer Blasius’ solution
gives 1,, = U3'%) Therefore a hot-film probe inserted
into the stream can also be operated as an anemometer.

In unsteady flow the direct relationships between
velocity, wall shear. and heat transfer are distorted by
inertial effects. Measurements of unsteady wall shear
stress and velocity distributions with hot-film probes
rely on the assumption that this distortion is small.
Thus, it is assumed that the unsteady heat transfer from
the hot-film departs only a little from its quasi-steady
valuc.

The aim of this paper is to examine theoretically how
good the quasi-steady approximation is and to
determine when it breaks down. It is, however, beyond
the scope of this work to solve the full, coupled flow and
heat transfer problem even for a particular case. So we
restrict ourselves to the response of a hot film to a given
shear variation. This enables us to obtain general
results about the importance of the thermal inertia of
the fluid in unsteady hot-film measurements. In
addition, we will investigate the response of the probe to
shear reversal. The heat output (which is always a
positive quantity) cannot show the change of the flow
direction. Furthermore, the thermal wake leads to
different conditions in the oncoming(i.¢. reversed) flow :
the temperature of the wake is higher than that of the
surrounding fluid so the overheat ratio is effectively
reduced and the heat transfer falls below its quasi-
steady value.

Much work has been done on the response of heat
and mass transfer to unsteady flow. Most theoretical
papers are, however, restricted to non-reversing flow.
Theoretical investigations of heat transfer problems in
reversing flow are very rare although this case is of
particular importance because of the early wall shear
reversal in unsteady flow.

One of the first papers on unsteady heat transfer from
an isothermal surface is by Lighthill [3]. He studied the
changes in the heat flux from a flat plate due to small
fluctuations in the free stream velocity for high and low
frequencies of the pulsation by means of a perturbation
method. Similarly, Fagela-Alabastro and Hellums [4]
investigated the concentration boundary layer in
pulsatile pipe flow and obtained solutions for the local
mass flux. Recently Lueck [5] extended Lighthill’s
theory and applied his results to hot-film probes
commonly used for oceanographic measurements. The
characteristic quantities for the quality of an unsteady
signal, the amplitude and the phasc response, were
studied by Patel et al. [6] and Mizushina et al.[ 7], both
theoretically and experimentally with mass transfer
probes. Fortuna and Hanratty [8] calculated
correction coefticients for the distorted hot-film signal
in fluctuating (turbulent) flow. Using a von Karman-~
Pohlhausen method, Kurz [9] calculated the heat
transfer from a hot film in unsteady flow in order to test
the applicability of steady calibrations for unsteady

measurements without flow reversal. Pedley [ 107 gives
an asymptotic expansion solution for the heat transfer
of a hot film in pulsatile flow. He extended this work ta
give a crude theory for flow with reversal [ 117 and used
this method in connection with an unsteady boundary
layer analysis [12] for a comparison with the unsteady
hot-film calibration experiments of Clark [13] and
Seed and Wood [14]. Good agreement was found
except for a phase lag between the approximate theory
and the experiments which could not be explained
satisfactorily. As there also exists a phase shift between
Pedley’s solution and the present calculations. the
phase lag might be due to the strong simplifications in
Pedley’s theory.

The resuits presented in this paper are expected to be
applicable to hot film or electrochemical probes used
for shear stress measurements. It is hoped that they
provide enough information for the experimentalist to
estimate the accuracy of his measurements. The results
might also be of interest to the chemical engincer
concerned with heat/mass transfer in unsteady flow,

2. STATEMENT OF THE PROBLEM

The hot film is modelled as a smali heated strip of
length L. embedded in a plane insulated boundary. The
film temperature, T, is taken to be constant. A fluid
with constant thermal properties and initial tempera-
ture T passes the boundary with a time-dependent
linear shear flow and is heated by the film (Fig. 1} For
this problem the energy equation can be written as

LT l (1
oy ix '

T ovswl b or
¢ °x

where T is the temperature and S(1) the time dependent

velocity gradient. We introduce the following
dimensionless variables {of O(1}]
X Yoo
Xx= -, y=- P
L L
s T,
S=— U=~
Srcl‘ 1 -y
X
T g/ %0 X=L T
Y oY

FiG. 1. Sketch of the idealized hot-film and flow field.
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and the dimensionless time

¢ 2
T= [(LZ/D)]Pe /3

where the Péclet number is defined as

Pe = S, I%/D. Q)

S, is a reference value for the wall shear which has to be
chosen according to the given shear function. The
resulting dimensionless temperature equation is

0.+ ys(0)0 = 0,,+ Pe” *0,. &)

Hot-film probes are commonly used in the high
Péclet number range. Therefore, we make a boundary
layer approximation and neglect the term for the heat
conduction in the flow direction. Thus we obtain the
equation for a 2-dim. unsteady thermal boundary layer,

(4a)

which has to be solved subject to the following
boundary conditions:

O(x,y=0,7)=1 for
O0x,y=0,7)=0 for

0, +ys()0, = 0,

0<x<1,

0<x,x>1, (4b)

04x,y,7)=0 for y-— o0,x > —o0.

Various initial conditions may be appropriate in
practice ; for convenience we shall in general choose as
the initial condition the solution of the steady state
equation

ys(z = 0)0, =0, (4¢)

subject to the same boundary conditions.

For the isolated region 0 < x < 1 the solution of this
equation is given by the well-known thermal boundary
layer solution of Lévéque [1]

n
e dn’ )

with n = p(s/9x)'/* a similarity variable and 1/I'(4/3)
= 1.120.

The steady wake for x > 1 is given by another
similarity solution derived by Ling [15]

INu}¥

S 723 o 6
92rren). ¢ ©)

where 7 is the same variable as above, Nu* = 0.8075 as
described below, and the numerical value of the gamma
function is 1.3541.

The overall heat flux is described by the Nusselt
number

al Looar
Nu="2o| =22
1), ey

dXx
r=0 (T—Tp)

1
=Pe”3f —0,),-0 dx (7a)
0

This expresses the well-known fact, that the Nusselt
number for the Lévéque problem is proportional to the

one-third power of the Péclet number. Because the
Péclet number does not occur explicitly in equation (4)
the heat transfer results are more conveniently
presented in terms of a modified Nusselt number. This is
independent of Pe and can be defined as

1
Nu* = Pe” 1*Nu = J —0,l,—o dx. (7b)
0
Lévéque’s solution for steady flow gives
Nu* = 0.8075. (7c)

We seek to calculate Nu* as a function of t for various
shear functions s(z).

For a given shear variation, s(z), the temperature
equations 4(a)4(c) can be solved by numerical
methods. The finite-difference technique used is
described in Section 4.

3. DISCUSSION OF ASSUMPTIONS

3.1. The thermal boundary layer approximation

By neglecting the axial heat conduction over the
wholelength of the film we have excluded the possibility
of thermal end effects. Clearly, the boundary layer
approximation breaks down at the leading and trailing
edges owing to the discontinuities in the temperature
field: 8., approaches infinity at the ends and the term
Pe™23¢.. in equation (3) cannot be neglected.
However, Ling’s [15] numerical solution of the full
temperature equation for steady shear flow over a finite
hot-film suggests that the growth of the overall heat
transfer owing to axial conduction is less than 1% for
Pe > 500. Springer and Pedley [16] and Springer [17]
obtained analytical solutions for the leading and
trailing edges of a long hot film using the Wiener—Hopf
technique. Their results, too, show that for high Péclet
numbers the influence of the ends on the overall heat
flux from the film is negligibly small. Ackerberg et al.
[18] performed steady mass flux experiments over a
large range of the Péclet number. For high Pe their data
agrees well with Lévéque’s solution. As we want to
determine the response (i.e. the overall heat transfer) of
ahot film in an unsteady shear flow we will not lose very
much accuracy by using equation (4) instead of the
more complicated equation (3), so long as the
instantaneous Péclet number, Pe,(t) = S()I%/D, is
large.

However, if the unsteady shear approaches zero or
passes through zero during reversal we again have to
consider the importance of axial heat conduction. For
very small shear rates the convective term cannot
balance the vertical heat conduction. Thus, heat
conduction in the flow direction must be important
unless the thermal inertia term 6, is large enough to
balance the vertical diffusion term.

If the inertia term is small the heat transfer proceeds
in a quasi-steady fashion. Hence, an unsteady analysis
of the behaviour of the hot-film probe is not necessary
(as long as the shear does not reverse) and the steady
theory of Ackerberg et al. [18] could be applied in the
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small Péclet number range. Furthermore, departures
from boundary layer theory are also present when a
probe is calibrated in steady flow. Thus, they are
implemented in the calibration curve and the wall shear
can be accurately predicted if this curve is used to relate
the wall shear to the measured heat flux.

If thermal inertia is important, however, and it is this
case in which we are mainly interested, we may assume
that axial diffusion of heat is still negligible and that
vertical diffusion dominates, being balanced by thermal
inertia. This concept will now be discussed for the
problem under consideration. During the deceleration
of the shear the thickness of the thermal boundary layer
is always less than one would expect from a quasi-
steady theory. This is due to the fact that fluid particles
have to be heated up as the boundary layer thickness
increases. In other words the thermal inertia term is
always positive{as is the term 0,,) and reduces the speed
of the diffusion process. If s approaches zero this means
that the temperature field still resembles that of a faster
flow with a thin boundary layer where the heat
conductionin the flow direction is comparatively small.
However, the balance in the temperature equation is no
longer between diffusion and convection but between
diffusion and thermal inertia. If the acceleration phase
of the flow (or in the case of shear reversal the fast
backflow) then takes over and no quasi-steady state
with small shear rate can be established, “normal”
boundary layer theory will again account for the
neglect of the term Pe” %30, ,. Consequently, we are
justified in using equation (4) throughout our heat flux
calculations provided the flow is so unsteady that 0. is
large during the periods of low shear. We shall have to
check the validity of this assumption for the particular
functions s(t) chosen in the next subsection.

In order to render the 2-dim. thermal boundary layer
theory applicable to pulsatile pipe flow it has to be
ensured that the boundary layer is very much thinner
than the pipe radius R. The same condition must be
imposed to permit the linearization of the flow field in
the near wall region. For steady flow this condition can
be checked. The linearization of the velocity profile is
accurate to 1%, as long as Y remains smaller than
0.020R. Thus, the condition

Y.
<0020 8)
R

must be imposed. Assuming the edge of the thermal
boundarylayer at 0 = 0.99 we have at the end of the hot

film

’?[J ~29pe 1. )

With the friction law for laminar pipe flow

vS 8

U2 Resp (o
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we finally obtain for the condition (8)

SRS ‘
z.3<—§> (ReygPry” 1 < 0.020. (n

This is valid for steady flow and gives only a very rough
estimate for the conditions in unsteady flow where the
curvature of the velocity profile is much more
pronounced. Furthermore, there is a growth of the
boundary layer in the wake which was not included in
equation (11). Thus, the restrictions that must be
imposed on Jy/R will have to be stronger than
equations (8) and (11), respectively. A full discussion of
the above problem for hot-film probes mounted on a
flat plate and inserted into a stream can be found in ref.

[10].

3.2. The shear function

So far we have not given our choice of the form of the
shear function. Because we want to investigate the
response of a hot film to fluctuating flow we take it to be

S = S+ cos Q1. (12a}

This represents, for example, the wall shear in a
pulsating pipe flow due to a pulsating pressure gradient
[19]. In dimensionless terms we have

s= 145§ cos wt {12b)

where

2

L
w=0Q—_Pe ¥
D

(With this definition of @ the inertia term 6, is of order w
and for @ <€ 1 we have quasi-steady conditions.) As
soon as the initial transients (caused by the initial
conditions) are damped out we expect a periodic
solution in time.

In order to show the influence of the thermal wake on
the heat transfer other choices of the shear function are
also considered :

(a) Linearly decelerating wall shear,
S= -5t {13)

where the shear deceleration § > 0 is kept constant. A
sensible choice for the reference shear is here obviously
the product of the shear deceleration S and the time
scale of the system (I2/D)Pe” 2/* which leads to

St = (S2I2/D)' 5. (14)

Having this value for the reference shear we can define
an unsteady Péclet number

Pe, = $33(I2/D)° (15)

and the temperature equation is
0, —1y0, = 0,,. (16)

(b) A steady shear flow is decelerated through
reversal until it reaches the same shear rate in the
opposite direction and is then held constant again. For
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this case the reference shear value is taken to be that of
the maximum shear.

It is now possible to verify the neglect of axial
diffusion at times of low shear. For this purpose it is
advantageous to linearize the shear function in the
regime of shear reversal. Thus, the unsteady Péclet
number Pe, and equation (16) could be used to describe
the temperature field. For large Pe, the flow field is so
unsteady that the time interval during which the shear
rateis too low for the application of “normal” boundary
layer theory is so small that significant changes in the
temperature field can hardly occur. The axial heat
conduction can therefore still be neglected if Pe,, as well
as Pe is large.

In pulsating reversing flow the relationship between
the unsteady and the reference Péclet number
[equations (14) and (3), respectively] can be evaluated
to give

Pe, = <S£f£)>3/5pe6/5 = [e(§2—1)1/2735Pe.  (17)

2
Sref

4. NUMERICAL METHOD

The partial differential equation (4a) and the
conditions (4b) and (4c) represent a combined initial
and boundary value problem which can be solved by a
finite-difference technique. Because the finite-difference
techniqueis based upon a Taylor series expansion of the
unknown variable (requiring continuous functions and
derivatives) the singularities in the boundary con-
ditions at x =0 and x=1 can cause a local
instability giving an inaccurate solution near the edges
of the hot film. This problem was resolved by using a
local mesh refinement for the x-step. As the instability

y(j)

i1+t

i1 k-1

i+, -1k-2
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damps out very quickly after a few steps owing to
“numerical viscosity” the inaccuracy of the solution in
the neighbourhood of the singular points has negligible
influence on the prediction of the overall heat transfer.

The initial steady state solution was programmed
with a Crank-Nicholson scheme and a comparison of
the solution with Lévéque’s solution suggests that the
error in Nu* is always smaller than 0.1%.

For the unsteady temperature field calculation a
Crank—Nicholson type finite-difference scheme, intro-
duced by Krause et al. [20] was used as long as s was
positive [Fig. 2(a)]. The discretization of the differential
equation (4a) is then given by

[0 1/2,5h-172+5V00:1i- 12,5k~ 1/2
= [Byy]i- 1/2,j.k-1/2 (18)

where

[0.di-1/2.50-12
1

=37z 00 k=0 jk—1+0i—1,jx—0i—1jx-1]
(00— 12,5k-112

1
= E[Oi.j,k_ei—l,j,k+0i,j,k—1 =8 1jk-1]

1
[eyy]i— 1/2,jk=-1/2 = A3 [Gi,j+ 1.k“20i.j,k+0i,j—1,k
2Ay

O rrk-1—20- L jk— 1 F 01 k-1]

and

s(t) dt = s,_ 5.

-1k
1), k-1

i+

x(i)

FiG. 2. Finite-difference schemes (E = expansion point).



350

Thediscretization error is of second order in Ax, Ayand
At. For numerical stability it must be ensured that

Az
Sy— =10
g Ax

which for positive §is always satisfied.

The discretization of the differential equation leads
to a set of simultaneous linear equations for the
unknowns 0, ;,. j= 1...n (n denotes a point on the
edge of the thermal boundary layer) at each position
x;, 7. The set will have tridiagonal matrix form and can
be solved recursively making use of the boundary
conditions and of previously calculated values of 6. The
local heat transfer was calculated from the temperature
field by an averaged 3- and 4-point formula, as it gave
the most accurate results in a comparison with
Lévéque’s solution in steady flow,

1
[0 )iier10= 6Av [0 jcan—060; 54+ 156; 125,

- Iogi,_jzi,k}' (19

The same formula was used to approximate the
insulated wall boundary condition. The overall heat
flux was determined from the local heat transfer values
by a simple trapezoidal rule integration.

The choice of a numerical scheme for the reversed
shear(s < 0)isnotaseasy as that for positive shear. One
possibility is the commonly used zig-zag scheme of
Krause et al. [20] [Fig. 2(b)]. But its stability condition

Sy = -1

T Ax

imposes an unrealistic restriction on the stepsize At
because Ax has to be very small at the edges of the film
{see above). Therefore the following procedure was
adopted. Far downstream, in the wake, a new
“boundary condition” was predicted using a newly
developed 3-level scheme [Fig. 2{c}]. The discretization
of the differential equation now gives

[()r]H 1525k +§,V_j[0x]u 12k [Oyy]i P20k 1
(20)
where

101 12,5k 1

1
= At [0 = 0un -1 01 a1 Oir 12
1
X;[HH ik 1 —‘Oi.j.kw 1].»

i .
["()_vy}i-%- 2. k-1 = 555 [Ui,j+ l.kngé.j'k"*_(}i,j* 1.k

U?X]H 12,0k—1 =

0 rm-2— 2000 et O oy k-2]

Tk
§ =
T 2

and

s(rydt & 8,y
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The discretization error is again of second order and as
stability condition we obtain from a von Neumann
stability analysis
e <o
T Ax

[Scheme (b could not be used because it has in this
application four unknown points at 1,.] Apparently,
the restriction on the step At seems to be the same as for
scheme (b). However, the new scheme is only used to
compute a new “boundary condition” in the former
wake where a larger Ax can be chosen. The scheme (¢}
needs additional points at a previous time level k-2,
But as these points are only required at the end of the
computation field the increase in computer storage is
only small.

The other temperature values can now easily be
computed with a backwards facing (turned)scheme (4},
progressing in the negative x-direction [ Fig. 2(d)]. The
question still to be answered is how far downstream in
the wake it is necessary to go in order to assess its effect
on heat transfer in reversed flow. This is discussed next.

4.1. Zones of dependence

The stability restrictions of the chosen finite
difference approximations can ecasily be explained
physically if we adopt Wang’s [21] concept of
characteristics and subcharacteristics.

The characteristics of equation (4a) are given by all
lines normal to the surface ; the speed of a temperature
disturbance in their direction is infinite. By using an
implicit formulation for the y-direction and solving the
difference equation for all points y; simultaneously the
physical condition of infinite speed of diffusion can be
adequately modelled. Therefore, no stability restriction
based upon the Ay stepsize can occur,

The subcharacteristics of equation (4a) given by

dr

Vi

[

= -1

{which describes the projection of the path of a fluid
particle at fixed height y onto the x t plane) can.
however, impose a restriction on the stepsize Ar.
Writing equation (21) in difference form we have the
condition for marginal stability of scheme (¢}

At

Sy = 1. 22
¥ Ax

In the case of negative shear this means that a fluid
particle at fixed height y; which was previously (at 7, .}
at the position x;, ; = x;+ Axis convected backwards
fo the position x; in the time interval Az (Fig. 3}
However, if

X

the particle will have passed the position x; and will be
at some place x;— Ax*. Thus, the fluid particle of x, is
the one that was previously at x,, , + Ax*. Now the
temperature of the particle clearly depends on its



Forced convective heat transfer from a hot film in shear flow

551

Ty

F1G. 3. View of the path of a fluid particle in the x—t plane.

previous temperature, but this cannot be determined
from the information provided within the numerical
scheme because the particle’s previous position lies
outside the covered area. The prediction of 8; ; , must
therefore be inaccurate and the numerical solution
becomes unstable.

The concept of subcharacteristics can of course also
be applied to the finite difference schemes (a) and (d).
But there we always have a known upstream point
giving the necessary information for calculating the
new temperatures. Thus, these schemes are stable as
long as the flow comes from the “upstream end” of the
scheme.

The limiting subcharacteristics for the zone of
dependence are

Xy —Xg = J Y max dT (23a)

0
and

(23v)

To be able to calculate the heat transfer we have to
know theinitial temperatures of all particles that will be
convected over the film. If x, = 1 denotes the end of the
heat transfer region, and a periodic solution (in the case
of pulsating flow) can be expected after about 2
backflow periods, the integration of equation (23a) over
all times of negative shear yields the point x, up to
which the initial solution has to be calculated.
Similarly, with x; = 0 and one interval of negative
shear, we can determine a point x, in front of the hot-
film up to which we must calculate in order to include
all heated particles that will pass the film again during
the following period of positive shear. During periods
of backflow the computation field will decrease by one
step Ax for each step A7 and cannot be increased during
periods of s>0 because of the limiting sub-
characteristic (23b).

The numerical procedure was tested in a simple heat
transfer problem in reversing flow that was solved
analytically by Pedley [21]. The numerical compu-
tation was accurate to within three significant figures.

X, —Xo = 0.

5. PRESENTATION AND DISCUSSION OF RESULTS

The time dependent heat transfer for the different
shear functions is presented in terms of the modified
Nusselt number Nu* in Figs. 4-9. The quality of the
hot-film signal is judged by comparing the unsteady
with the ideal, quasi-steady heat transfer, Nu}.

L T T T T T T
l7 quasi-steady

10

|

Nu* 05
i §05 |
O':) 1 1 1 - 1 1 1
I 3r
0 2 bl 2 2n
wT
FIG. 4(a). Response of the hot film in non-reversing flow,
§=05.
—_ -— T T L

*

Nu
i 809 |
0.0 S 1 L S 1 1
I an
0 > b 0] Ay
wTt
FIG. 4(b). Response of the hot film in non-reversing flow,
§=09.
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3n .
2 27

F1G. 5(a). Comparison with Pedley’s solution [11] in non-
reversing pulsatile flow (§ = 0.9, w = 0.1).

10

NG 05

0 3
0 7 T - b
wT

F1G. 5(b). Comparison with Pedley’s solution [11] in non-
reversing pulsatile flow (§ = 0.9, w = 1.0).

J

quasi-steady:

numerical

- L‘LjL b

s{T)

L i L

4 0 1 2
T

-

w Ly,\,. [N SR

[ B 1
3

A

FI1G. 6. Heat transfer for the decelerated and constant shear.

R A EEMMA D S SRR A S SRS TR R S—

quasi-steady—,
Pedley—
numerical—.

52~

F1G. 7. Heat transfer for decelerated flow in comparison with
Pedley’s results [11].

™ T T T T T T 1

quasi-steady—,

NG 05

0.0

Fi1G. 8(a). Response of the hot film in puisatile reversing flow,

§=120.

T T T T T T

—quasi-steady

00—
a

WwT

FiG. 8(b). Response of the hot film in pulsatile reversing flow,
§=064.
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NG 05

0.0

wY

F1G. 9(a). Comparison with Pedley’s solution [11] in reversing
pulsatile flow, § = 2.0.

2.0[* — T al T T T T

Vit

F1G.9(b). Comparison with Pedley’s solution [11] in reversing
pulsatile flow, § = 9.6.

5.1. Non-reversing shear flow

Figures 4(a) and (b) show the results of the numerical
heat transfer calculations in non-reversing flow for
different values of the amplitude § and the frequency
parameter . The pulsations in heat transfer due to the
unsteady flow field are quite pronounced even for high
. But the minimum as well as the maximum value of
heat transfer are attenuated and have a phase lag in
comparison with the quasi-steady heat flux. The
attenuation and the phase lag are strongest for high
frequencies and high amplitudes of the pulsation, as can
be expected. The attenuation can be expressed by an
amplitude ratio

Nuf, . —Nu¥

ARmax = m (24)

qmax

and the phase shift is given by
¢max = wT(Nu:lax) - a)r(Nu* )

qmax.

(25)

(with similar formulae for the minimum).
Graphs of the variations of 4; and ¢ with the
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parameters § and w are shown in Figs. 10(a), (b), 11(a)
and (b). The distortion of the quasi-steady heat transfer
curve by thermalinertia effects is more discernible at the
minimum where convection is small and thermal
inertia is important than at the maximum where
convection dominates and the influence of thermal
inertia is comparatively small. These differences
between the maxima and minima cannot be detected by
a first order perturbation solution such as Lighthill’s
theory [3].

For pulsatile flow with the amplitude § = 0.5 [Fig.
4(a)] departures from quasi-steady behaviour are small
as long as w remains smaller than about 1.25. Then the
amplitude response Ay is accurate to 10% and the
maximum phase lag is smaller than 22°. With

1.0

Rmax

05

10

ARmin

05

F1G. 10(b). Minimum amplitude response of the hot film.
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FIG. 11(a). Maximum phase response of the hot film.
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F1G. 11(b). Minimum phase response of the hot film.

increasing « the departures [rom quasi-steady
behaviour grow rapidly. Similarly, an increase in
amplitude §soon leads to a deterioration of the hot-film
signal. So, for example, the amplitude response for
§ =09 [Fig. 4(b)] is 10%; accurate only as long as the
frequency parameter does not exceed 0.4.

In Figs. 5(a) and (b) the numerical results are
compared with the heat transfer calculations of Pedley
[11]. His theory gives very accurate results for high
shear rates (Pedley’s “approximately quasi-steady
regime”) although the slight phase lag cannot be
predicted. In the range of low shear rates Pedley
assumes a “purely diffusive regime” and neglects the

convection term, solving only the I[-dim. heat
conduction equation. This assumption, however leads
to an underestimate in heat transfer at times of low fluid
velocities. (Pedley matched his two solutions by
making the “centre of mass” of the temperature profile
continuous during the change: “approximately quasi-
steady” “purely diffusive”. A matching for the
changeover “purely diffusive”- “approximately quasi-
steady” could not be made as the “approximately quasi-
steady” solution is independent of initial temperatures.
Thus, in reversing flow, the influence of the thermal
wake had to be neglected.)

5.2. Reversing shear flow

In reversing shear flow the numerical calculations
show a considerable influence of the thermal wake on
heat transfer. For the decelerated and constant shear
(Fig. 6) the backflow of the wake (i.e. the increase in
ambient fluid temperature) reduces the Nusselt number
significantly. After 4 time units 7 of constant shear the
influence of thermal inertia due to previous changes in
the fluid velocity will be damped out but still the heat
transfer 1s reduced by 8%, This must be due to the
thermal wake which remains at a fairly high
temperature for a long distance [as can also be seen
from the steady wake solution, equation (6)].

In the case of uniformly decelerated shear flow
fequation (13)] the same effect can be seen, however,
combined with thermal inertia effects (Fig. 7). For
comparison, Pedley’s approximate solution is plotted
i the same figure as well as the quasi-steady
approximation. The different influences on heat
transfer can easily be explained by comparing these
curves. For positive shear (x < —1.5) Nu* is higher
than the quasi-steady heat flux Nuf owing to the
decelerating influence of the thermal inertia. This is
reflected by both the numerical and the approximate
solution and their agreement is good. For low shear
rates (positive and negative) thecurves do notfollow the
quasi-steady one and remain positive. The neglect of
convection in Pedley’s theory, however, leads to an
underestimate in heat transfer and there is a time lag
between the approximate and the numerical solution.
For high negative shear (r > 1.5) Pedley’s solution
cannot detect the changes introduced by the backflow
of the thermal wake but it accounts for the inertial
effects. Thus, the difference between the quasi-steady
and the approximate solution reflects the influence of
thermal inertia whereas the further difference to the
numerical curve shows the influence of the thermal
wake. The results for pulsatile flow with shear reversal
are presented in Figs. 8(a), (b), 9(a) and (b). For the
amplitude § = 2 [Fig. 8(a)] the maximum value of heat
transfer is well represented and the amplitude response
for the maximum is good although there is a phase lag
between heat transfer and shear variation. Only for
high frequencies (w = 2) the response of the maximum
is down by more than 10%,. The minimum response in
reversing flow has to be redefined because the hot-film
signal does not show the change of the flow direction
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(change of sign):
Nuk, + Nuf

Agpin = ==
Nudin+ Nuf

Rmin (26)
This amplitude response isin general better in reversing
than in non-reversing flow because the hot-film signal
remains positive and the thermal inertia keeps the heat
flux high, reducing the decrease in heat transfer due to
the backflow of the thermal wake. Thus, the relative
error in the amplitude response remains small (also
because of the high amplitude). However, the sensitivity
of the hot film to changes in the flow field is bad during
the period of reversed shear : the instantaneous value of
the wall shear can only be predicted inaccurately from
the measured heat transfer, and for high frequencies
(w = 2) the hot-film signal for the reversed shear is
completely smeared out (see curve for w = 5) making
accurate measurements impossible.

Similar behaviour occurs for § = 6.4 [Fig. 8(b)] but
here the quality of the hot-film response is better than
for § = 2. The phase difference between flow pulse and
heat transfer is reduced and the heat transfer for the
reversed shear follows the quasi-steady heat flux
slightly better. Though these improvements are
striking at first glance (one would expect a worse
behaviour because of the rapid changes in wall shear)
they can easily be explained as follows. The absolute
values of the shear function are high most of the time
(for positive as well as negative shear) ; thus, the thermal
disturbances (inertia, wake) are small and convection
dominates.

The maximum heat transfer, however, is changed by
heated fluid which was convected in front of the film
during backflow and now passes the film again
reducing its heat output. This does not happenfor § = 2
where at times of maximum shear all heated fluid is
already washed away. Therefore the hot-film signal
quality is, in the neighbourhood of the maximum shear
rate, worse for high amplitudes than for low
amplitudes.

Computations were made only up to the third flow
reversal. The curves shown represent the last period
(from the beginning of the second up to the beginning of
the third backflow period) of these calculations. In
order to present the plots with the argument of the flow
pulse (wt = 0to wt = 2n) the last part of the curve was
cut off and joined at the front (before the second shear
reversal). The small kink in the very unsteady curve
§ = 6.4/w = 5 at the joining point shows that the heat
transfer oscillations were not quite periodic at that time
whereas the smoothness of the other curves indicate the
fact that all initial transients were completely damped
out.

Pedley’s [11] approximate solution gives similar
wave forms as the numerical results presented here
[Figs. 9(a) and (b)] but these have a significant phase
advance. A phase difference with quantitatively good
agreement was also found by Pedley in a comparison of
his results with experimental data [ 13, 14] and the most
probable cause was thought to originate from the three-
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dimensionality of the flow and temperature field.
Although the present work cannot explain the phase
lag of Pedley’s solution completely, and 3-dim. effects
must still be considered important (the phase lag
between Pedley’s solution and experiments is about
n/4; the one between his solution and the numerical
results is at most ©/8, however) there seem to be
inaccurate predictions with Pedley’s theory because of
its strong simplifications. The good quantitative
agreement might occur because two counteractive
effects (the convection at low shear rates and backflow
of the wake) were omitted which will, at least partially,
cancel. Thus, their neglect does not introduce large
errors at times of low shear. In the range of higher shear
the neglect of the increase in ambient fluid temperature
due to the thermal wake leads to an overestimate of heat
transfer in Pedley’s solution.

Figures 10(a), (b) and 11(a), (b) show the curves of the
characteristic quantities of a hot-film signal, the
amplitude and the phase response, for different
amplitudes as a function of the frequency parameter c.
They were plotted from the calculated data for w = 0.2,
0.5, 1,2, 3.5and 5. The exact location and the values of
the maxima and minima were calculated from the
discrete numerical points [9° (non-reversing) and
about 2° (reversing) apart] by a cubic spline
interpolation for the five points next to the extrema.

5.3. Time-averaged heat transfer

The question of whether a superimposed oscillation
on asteady stream enhances heat or mass transfer when
the average flow rate is held constant will be discussed
briefly as it is related to this investigation. The time-
averaged heat transfer

PR 1 27
Nu* = P J Nu* d(wr) (27)
0

was evaluated by a Simpson rule integration of the
instantaneous heat transfer values. In flow without
reversal [Fig. 12(a)] the time averaged heat transfer is
always decreased as could also be shown by McMichael
and Hellums [23]. The reduction in heat transfer is the
larger the smaller the frequency and the higher the
amplitude of the pulsation. For high frequencies the
calculated averaged heat transfer approaches the
steady value Nu}.

Calculations of the time averaged heat transfer in
reversing pulsatile flow exhibit a different behaviour
which is strongly dependent on amplitude [Fig. 12(b)].
If the backflow remains small the ratio Nu*/Nu*
remains smaller than one. For increasing frequency it
first drops from the quasi-steady value owing to the
influence of the wake but increases then again owing to
thermal inertia to approach finally the value one.

For high amplitudes there is an increase in time
averaged heat transfer but the effect of the thermal wake
as well as the thermal inertia counteract the
improvement of heat flux such that best values are
obtained for low frequencies.
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F16. 12(a). Time averaged heat flux in non-reversing pulsating
flow.
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F1G. 12(b). Time averaged heat flux in reversing pulsating flow.

The following general results can be obtained from
Figs. 12(a) and (b): an enhancement of time averaged
heat transfer is only possible in flow with reversal and
can only be attained if the quasi-steady heat flux (for the
same flow field) also shows an enhancement. The
improvement of heat transfer in flow that fulfils the
conditions is the better the smaller the pulse frequency
and the higher the amplitude. For very high frequencies

the ratio N u“‘b/Nus approaches one in all cases.
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CONVECTION THERMIQUE FORCEE ET VARIABLE AUTOUR D'UN FILM CHAUD DANS
UN ECOULEMENT CISAILLANT AVEC OU SANS RETOUR

Résumé— Le flux thermique a partir d’un film chaud & température constante, sur une surface plane isolée, est
étudié numériquement en supposant que la théorie de couche limite thermique est applicable partouret 4 tout
instant. Le champ d’ écoulement est décrit par {a) une pulsation ou (b) une décélération linéaire d’un
écoulement cisaillant bidimensionnel, Pour les grandes fréquences de pulsation le transfert thermique calculé
s'écarte fortement de la valeur quasi-permanente. Dansécoulement de retour, on peut constater une influence
considérable du sillage thermique. Des calculs du flux thermique moyen dans le temps montrent qu’un
accroissement du transfert dii 4 la superposition des oscillations peut se produire seulement en écoulement de
retour.

INSTATIONARER WARMEUBERGANG DURCH ERZWUNGENE KONVEKTION VON
EINEM HEISSFILM IN SCHERSTROMUNGEN OHNE UND MIT RICHTUNGSUMKEHR

Zusammenfassung—Die Wirmeabgabe eines Konstant-Temperatur-Heif$films, der glatt in eine ebene,
isolierende Oberfliche eingebaut ist, wird numerisch unter der Annahme untersucht, da die thermischen
Grenzschichtvereinfachungen tiberall und zu allen Zeiten giiltig sind. Das Strémungsfeld wird durch (a) eine
pulsierende oder (b) eine gleichmiBig verzogerte, ebene Scherstromung beschrieben. Der berechnete,
instationéire Warmeiibergang weicht fiir hohe Pulsationsfrequenzen stark vom quasistationiren Wert ab. In
Stromungen mit Richtungsumkher wird ein erheblicher EinfluB des thermischen Nachlaufs deutlich.
Berechnungen des zeitlich gemittelten Wirmeiibergangs zeigen, daB nur in Strémungen mit
Richtungswechsel eine Verbesserung der Wirmeabgabe durch aufgeprigte Oszillationen méglich ist.

HECTALHMOHAPHBIN TEIUJIONEPEHOC BBIHYXAEHHON KOHBEKILIHMEHA OT
HATPETOH NJIEHKU TPH ITPIMOM M OBPATHOM TEYEHHU BA3KON XHUAKOCTH

Ammiorauns — [Tposeieno YHCACHHOE HCCICAOBAHKE NEPEHOCA TEMJIA OT HArpeTol UIEHKH HOCTORHHOMR
TEMIICPATYPEI, PacnOJOXKEHHOH HAa NOBEPXHOCTH IIOCKOH HM30JHpPYIOLIEH CTEHKH, B NMPEANONOKCHHH,
4TO TEOPHA TENJIOBOIO IOrPaHHYHOrO CNOA NpUMeHHMa B mo6ol Touke W B moGoli MoMmeHT
BpeMeHH. [lone TedeHHs OMHCHLIBACTCA C NOMOILbIO (a) MyALCHPYIOIIEro WiH (6) THHeHHO 3aMeuIfIole-
TOCH [OTOKA C NONEPEYHBIM TPAAHEHTOM CKOPOCTH. [IpH BHICOKHMX HacTOTax NyJLCALHMil pacCUMTaHHLIe
3HAYCHHMS HECTAUMOHAPHOIO TEMICBOTO NOTOKA 3HAYHTENLHO OTAMYAIOTCA OT KBA3HCTAUMOHAPHBIX
snaveHuil. [Ipn ob6parHoM TeucHHM HabirOdaeTCR CYIUECTBEHHOE BAMAHHE Temsiosoro cnena. Pacuerst
YCPEAHEHHBIX 10 BPEMCHH BETHYHH TENJIOBOTO NOTOKA NMOKA3BIBAIOT, 4T0 HHTEHCUDUKALMS Terionepe-
HOC4 33 CYET MYJIbCcaliHii BO3MOXHA TONILKO NPH OGPATHOM TEYEHHH.
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