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UNSTEADY FORCED CONVECTIVE HEAT TRANSFER FROM A 
HOT FILM IN NON-REVERSING AND REVERSING SHEAR FLOW 

Department of Apphed Mathematics and Theoretical Physics, Cambridge, U.K. 

(Received 22 March 1982 and in r~u~s~d~rrn 28 May 1982) 

Abstract-The heat flux from a constant temperature hot film mounted flush with the surface of a plane 
insulating wall is examined numerically assuming that the thermal boundary layer theory is applicable 
everywhere and at ah times. The flow field is described by (a) a pulsating or (b) a linearly decelerating two- 
dimeusion~ shear flow. For high frequencies of the pulsation the calculated unsteady heat transfer departs 
strongly from the quasi-steady value. in reversing Row a considerable influence of the thermal wake can be 
seen. Computations of the time averaged heat flux show that an enhancement of heat transfer due to 

superimposed oscillations can only occur in reversing flow. 
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NOMENCLATURE 

amplitude response; 
thermal diffusivity [m2 s- ‘] ; 
length of the hot film [m] ; 
Nusselt number, aL/i; 
modified Nusselt number, Pe-*‘3Nti; 
P&let number, S,,rL?jD; 
Prandtl number, v/D; 
radius of the tube cm]; 
Reynolds number, U,ZR/v ; 
(dimensionless) velocity gradient at the 
wall [s-r] ; 
(dirn~nsion~~s) change of the velocity 
gradient at the wall [s-‘1; 
time [s] ; 
temperature [KJ ; 
free stream tem~rature [K] ; 
hot film temperature [K]; 
mean velocity of laminar tube flow 
[m s-l]; 
free stream velocity [m s- ‘1; 
(dimensionless) coordinate parallel to 
the surface Cm] ; 
(dimensionless) coordinate normal to 
the surface Em]. 

Greek symbols 

heat transfer coefficient [W mm2 K-l]; 
Gamma function : 
thickness of the thermal boundary 
layer Cm] ; 
steps in the appropriate coordinate 
directions ; 
similarity variable, y(s/9x)*‘3 ; 
dimensionless temperature; 
thermal conductivity [W m-r K-l]; 
dynamic viscosity [kg m- l s _ ‘1; 

t Present address: Lehrstuhi fiir W~~e~bertragung und 
Klimatechnik, ~heinisch-West~lische Technische Hoch- 
schule, Aachen, West Germany. 

Subscripts 

i,j, k, 

in, 
max, 
min, 
% 
43 
ref, 

s, 
u, 

Superscripts 

_ 

kinematic viscosity [m2s- ‘1; 
dimensionless time; 
wall shear stress [N m-l] ; 
phase difference [degrees] ; 
(dimensionless) angular frequency 
[s- ‘1. 

index for the coordinate directions 
x, y, z, respectively; 
instantaneous ; 
maximum ; 
minimum ; 
edge of boundary layer ; 
quasi-steady; 
reference value; 
steady; 
unsteady. 

amplitude; 
time averaged. 

1. INTRODU~DN 

IN TWO-DIMENSIONAL steady incompressible flow the 
convective heat transfer from a small isothermal heated 
film on an insulated wall is (under ideal conditions) 
found to be approximately proportional to the one- 
third power of the local wall shear stress, r,. This 
relationship was first derived by Leveque [I] and was 
used by Ludwieg [2] for the development of a hot-film 
probe for wall shear stress measurements. The one- 
third power law holds as long as the heat conduction in 
the flow direction is negligible in the thermal boundary 
layer that develops over the film, requiring the P&let 
number, Pe = r,L?/@, to be large and the thermal end 
effects to be small. Furthermore, the thermal boundary 
layer has to be confined to the region next to the wali 
where the velocity field can be approximated by a linear 
shear profile. 
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For given Ruid properties the local wall shear in an 
incompressible steady boundary layer depends only on 
the shape of the boundary and the free stream velocity, 
L;,,. (For a llat plate boundary layer Blasius’ solution 
gives 7& x b$“.) Therefore a hot-film probe inserted 
into the stream can also be operated as an anemometer. 

In unsteady thou the direct relationships between 
velocity. wall shear. and heat transfer are distorted by 

inertial effects. Measurements of unsteady wall shear 
stress and velocity distributions with hot-film probes 

rely on the assumption that this distortion is small. 
Thus. it is assumed that the unsteady heat transfer from 
the hot-film departs only a little from its quasi-steady 
\dliC!. 

The aim of this paper is to examine theoretically how 
good the quasi-steady approximation is and to 

determinc when it breaks down. It is, however, beyond 
the scope ofthis work to solve the full. coupled flow and 

heat transfer problem even for a particular case. So wc 
restrict ourselves to the response ofa hot film to a given 
shear Lariation. This enables us to obtain general 
results about the importance of the thermal inertia 01” 
the fluid in unsteady hot-film measurements. In 
addition. we will imestigate the response ofthe probe to 
shear reversal. The heat output (which is always a 
positive quantity) cannot show the change of the flow 
direction. Furthermore, the thermal wake leads to 
different conditions in the oncoming(i.e. reversed) flow : 
the temperature ol’the wake is higher than that of the 
surrounding lluid so the overheat ratio is effectively 
reduced and the heat transfer falls below its quasi- 
steady baluc. 

Much work has been done on the response of heat 
and mass transfer to unsteady flow. Most theoretical 
papers arc, however, restricted to non-reversing flow. 
Theoretical investigations of heat transfer problems in 
reversing tlow arc ver1 rare although this case is of 
particular importance because of the early wall shear 
reversal in unsteady flow 

One ofthe lirst papers on unsteady heat transrer from 

an isothermal surface is by Lighthill [3]. He studied the 
changes in the heat flux from a tlat plate due to small 
fluctuations in the free stream velocity for high and low 

frequencies ofthe pulsation by means ofaperturbation 
method. Similarly. Fagela-Alabastro and Hellums [4] 
investigated the concentration boundary layer in 
pulsatile pipe Row and obtained solutions for the local 
mass tlux. Recently Lueck [S] extended Lighthill’s 
theory and applied his results to hot-film probes 

commonly used for oceanographic measurements. The 
characteristic quantities for the quality of an unsteady 
signal, the amplitude and the phase response, were 
studied by Pate] (I/ u/. [6] and Mizushinaer al. 171. both 
theoretically and experimentally with mass transfer 

probes. Fortuna and Hanratty [S] calculated 
correction coefficients l’or the distorted hot-film signal 
in tluctuating (turbulent) ilow. Using a von Karman- 
Pohlhausen method. Kurr [9] calculated the heat 
transfer from a hot film in unsteady llow in order to test 
the applicability of xteadq calibrations for unsteady 

measurements without flow reversal. Pedley [IO] gives 
an asymptotic expansion solution [or the heat transfer 
of a hot film in pulsatile flow. He extended this work tc? 
give a crude theory for flow with reversal [I l] and used 
this method in connection with an unsteady boundar) 
layer analysis [12] for a comparison with the unstead! 
hot-film calibration experiments of (‘lark [I 31 and 
Seed and Wood 1141. Good agreement was ft?und 
except for a phase lag between the approximate theor) 
and the experiments which could not be cxplainGd 
satisfactorily. As there also exists a phase shift between 
Pedley’s solution and the present calculations. the 
phase lag might be due to the strong simplifications IT! 
Pedley’s theory. 

The results presented in this paper are expected to be 
applicable to hot film or electrochemical probes used 
for shear stress measurements. It is hoped that the\ 
provide enough information for the cxperimentalist 117 
estimate the accuracy of his measurements. The results 
might also be of interest to the &em& cnginccl 
concerned with heat,/mass transfer in unsteady no\$. 

2. STATEMENT OF THE PROBLEM 

The hot film is modelled as a small heated strip 01 
length 1. embedded in a plane insulated boundary. The 
film temperature, 7’,, is taken to bc constant. A fluid 
with constant thermal properties and initial tempera- 
ture TO passes the boundary with a time-dependent 
linear shear flow and is heated by the lilm (Fig. 1 i. For 
this problem the energy equation can he written as 

where 7‘ is the temperature and S(t) the time dependent 
velocity gradient. We introduce the following 
dimensionless variables [of O( 1 )] 

FIG. I. Sketch of the idealized hot-film and flow field 
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and the dimensionless time 

t 1 1 ~ ~~213 

z = (Lz/D) 

where the P&let number is defined as 

Pe = S,,,L21D. (2) 

Sref is a reference value for the wall shear which has to be 
chosen according to the given shear function. The 
resulting dimensionless temperature equation is 

%, + ys(z)%, = o,, + Pe - 2’3eXX. (3) 

Hot-film probes are commonly used in the high 

P&let number range. Therefore, we make a boundary 
layer approximation and neglect the term for the heat 
conduction in the flow direction. Thus we obtain the 
equation for a 2-dim. unsteady thermal boundary layer, 

%Z + ys(z)%, = eyy, (4a) 

which has to be solved subject to the following 
boundary conditions : 

%(x,y=O,z)= 1 for O<x<l, 

%,(x,y=O,z)=O for O<x,x>l, (4b) 

%,(x,y,z) = 0 for y+ co,x+ -co. 

Various initial conditions may be appropriate in 
practice; for convenience we shall in general choose as 
the initial condition the solution of the steady state 
equation 

ys(7 = op, = e,, (4c) 

subject to the same boundary conditions. 
For the isolated region 0 < x < 1 the solution of this 

equation is given by the well-known thermal boundary 
layer solution of LCv&que [ 11 

1 ‘I 
Q=l-- 

r(4/3) s 0 e-q’2 dy’ (5) 

with q = Y(s/~x)“~ a similarity variable and l/r(4/3) 
= 1.120. 

The steady wake for x 9 1 is given by another 
similarity solution derived by Ling [ 151 

%= 
3Nu,* 

92’31-(2/3) 
x-2/3 e-“’ 

where q is the same variable as above, Nu: = 0.8075 as 
described below, and the numerical value of the gamma 
function is 1.3541. 

The overall heat flux is described by the Nusselt 
number 

s 

l = &l/3 
-QJ,,=O dx (7a) 

0 

This expresses the well-known fact, that the Nusselt 
number for the LCvEque problem is proportional to the 

one-third power of the P&let number. Because the 

P&let number does not occur explicitly in equation (4) 

the heat transfer results are more conveniently 
presentedin terms ofamodified Nusselt number. This is 
independent of Pe and can be defined as 

Nu* = f’-“3Nu = 
s 

1 
-eylyzo dx. (7b) 

0 

LBvgque’s solution for steady flow gives 

Nu: = 0.8075. (7c) 

We seek to calculate Nu* as a function of 7 for various 

shear functions s(7). 

For a given shear variation, s(7), the temperature 

equations 4(a)-4(c) can be solved by numerical 
methods. The finite-difference technique used is 

described in Section 4. 

3. DISCUSSION OF ASSUMPTIONS 

3.1. The thermal boundary layer approximation 
By neglecting the axial heat conduction over the 

whole length ofthe film we have excluded the possibility 
of thermal end effects. Clearly, the boundary layer 
approximation breaks down at the leading and trailing 
edges owing to the discontinuities in the temperature 
field : f3,, approaches infinity at the ends and the term 
Pe-2’3Q in equation (3) cannot be neglected. 

Howeve: Ling’s [15] numerical solution of the full 

temperature equation for steady shear flow over a finite 
hot-film suggests that the growth of the overall heat 
transfer owing to axial conduction is less than 1% for 
Pe > 500. Springer and Pedley [ 161 and Springer [ 171 
obtained analytical solutions for the leading and 
trailing edges of a long hot film using the Wiener-Hopf 
technique. Their results, too, show that for high P&let 
numbers the influence of the ends on the overall heat 
flux from the film is negligibly small. Ackerberg et al. 
[18] performed steady mass flux experiments over a 
large range of the P&let number. For high Pe their data 
agrees well with LCv&que’s solution. As we want to 
determine the response (i.e. the overall heat transfer) of 
a hot film in an unsteady shear flow we will not lose very 
much accuracy by using equation (4) instead of the 

more complicated equation (3), so long as the 
instantaneous P&let number, Pe,,(t) = S(t)i?/D, is 
large. 

However, if the unsteady shear approaches zero or 

passes through zero during reversal we again have to 
consider the importance of axial heat conduction. For 
very small shear rates the convective term cannot 
balance the vertical heat conduction. Thus, heat 
conduction in the flow direction must be important 
unless the thermal inertia term 8, is large enough to 
balance the vertical diffusion term. 

If the inertia term is small the heat transfer proceeds 

in a quasi-steady fashion. Hence, an unsteady analysis 
of the behaviour of the hot-film probe is not necessary 
(as long as the shear does not reverse) and the steady 
theory of Ackerberg et al. [ 181 could be applied in the 
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small P&let number range. Furthermore, departures 
from boundary layer theory are also present when a 
probe is cahbrated in steady flow. Thus, they are 
implemented in the calibration curve and the wall shear 
can be accurately predicted if this curve is used to relate 
the wall shear to the measured heat flux. 

If thermal inertia is important, however, and it is this 
case in which we are mainly interested, we may assume 
that axial diffusion of heat is still negligible and that 
vertical diffusion dominates, being balanced by thermal 
inertia. This concept will now be discussed for the 

problem under consideration. During the deceleration 
ofthe shear the thickness of the thermal boundary layer 
is always less than one would expect from a quasi- 
steady theory. This is due to the fact that fluid particles 

have to be heated up as the boundary layer thickness 
increases. In other words the thermal inertia term is 
always positive (as is the term O,,,) and reduces the speed 
of the diffusion process. Ifs approaches zero this means 
that the temperature field still resembles that of a faster 
tlow with a thin boundary layer where the heat 
conduction in the flow direction is comparatively small. 
However, the balance in the temperature equation is no 
longer between diffusion and convection but between 

diffusion and thermal inertia. If the acceleration phase 
of the flow (or in the case of shear reversal the fast 
backflow) then takes over and no quasi-steady state 
with small shear rate can be established, “normal” 
boundary layer theory will again account for the 
neglect of the term PP “‘OX1. Consequently. we are 
justified in using equation (4) throughout our heat flux 
calculations provided the flow is so unsteady that 0, is 
large during the periods of low shear. We shall have to 
check the validity of this assumption for the particular 
functions s(r) chosen in the next subsection. 

in order to render the 2-dim. thermal boundary layer 
theory applicable to pulsatile pipe how it has to be 
ensured that the boundary layer is very much thinner 
than the pipe radius R. The same condition must be 
imposed to permit the linearization of the flow field in 
the near wall region. For steady flow this condition can 

be checked. The linearization of the velocity profile is 

accurate to l”,, as long as Y remains smaller than 

0.020R. Thus, the condition 

must be imposed. Assuming the edge of the thermal 
boundary layer at 0 = 0.99 we have at the end ofthe hot 

film 

With the friction law for laminar pipe flow 

VS 8 

ui Re,, 

we finally obtain for the condition (8) 

This is valid for steady flow and gives only a very rough 

estimate for the conditions in unsteady flow where the 
curvature of the velocity profile is much more 

pronounced. Furthermore, there is a growth of the 
boundary layer in the wake which was not included in 

equation (11). Thus, the restrictions that must be 
imposed on 6,/R will have to be stronger than 
equations (8) and (1 l), respectively. A full discussion of 
the above problem for hot-film probes mounted on a 

flat plate and inserted into a stream can be found in ref. 

ClOl. 

3.2. The sheurfunction 
So far we have not given our choice of the form of the 

shear function. Because we want to investigate the 
response of a hot film to fluctuating flow we take it to be 

s = S,,,+S cos I&. ( 12a) 

This represents, for example, the wall shear in a 
pulsating pipe flow due to a pulsating pressure gradient 

[ 197. In dimensionless terms we have 

s = 1 + i cos CIJZ (12b) 

where 

(1, = n$Pe * .? 
(With this definition of w the inertia term 0, is of order tr) 
and for w + 1 we have quasi-steady conditions.) As 
soon as the initial transients (caused by the initial 
conditions) are damped out we expect a periodic 
solution in time. 

In order to show the intluence of the thermal wake on 
the heat transfer other choices of the shear function are 
also considered : 

(a) Linearly decelerating wall shear, 

s = -St, (13) 

where the shear deceleration s > 0 is kept constant. A 
sensible choice for the reference shear is here obviously 
the product of the shear deceleration s and the time 
scale of the system (L?/D)Pe- 2’3 which leads to 

Sref = (S3Z?!D)’ .5. (14) 

Having this value for the reference shear we can define 
an unsteady Ptclet number 

pe ” = $3!“(E/D)“” (15) 

and the temperature equation is 

n,-?yo, = o,,,. (16) 

(b) A steady shear Row is decelerated through 
reversal until it reaches the same shear rate in the 
opposite direction and is then held constant again. For 
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this case the reference shear value is taken to be that of 
the maximum shear. 

It is now possible to verify the neglect of axial 
diffusion at times of low shear. For this purpose it is 
advantageous to linearize the shear function in the 
regime of shear reversal. Thus, the unsteady P&let 
number Pe, and equation (16) could be used to describe 
the temperature field. For large Pe, the flow field is so 
unsteady that the time interval during which the shear 
rate is too low for the application of“normal” boundary 
layer theory is so small that significant changes in the 
temperature field can hardly occur. The axial heat 
conduction can therefore still be neglected if Pe, as well 
as Pe is large. 

In pulsating reversing flow the relationship between 
the unsteady and the reference P&let number 
[equations (14) and (3), respectively] can be evaluated 
to give 

Pe = S(S = 0) 3’5 
” ( > ~ 

Sf,r 
Pe6/5 = [w(s^‘- l)‘iz]3/5Pe. (17) 

4. NUMERICAL METHOD 

The partial differential equation (4a) and the 
conditions (4b) and (4~) represent a combined initial 
and boundary value problem which can be solved by a 
finite-difference technique. Because the finite-difference 
technique is based upon a Taylor series expansion of the 
unknown variable (requiring continuous functions and 
derivatives) the singularities in the boundary con- 
ditions at x = 0 and x = 1 can cause a local 
instability giving an inaccurate solution near the edges 
of the hot film. This problem was resolved by using a 
local mesh refinement for the x-step. As the instability 

damps out very quickly after a few steps owing to 
“numerical viscosity” the inaccuracy of the solution in 
the neighbourhood of the singular points has negligible 
influence on the prediction of the overall heat transfer. 

The initial steady state solution was programmed 
with a Crank-Nicholson scheme and a comparison of 
the solution with Leveque’s solution suggests that the 
error in Nu* is always smaller than 0.1%. 

For the unsteady temperature field calculation a 
Crank-Nicholson type finite-difference scheme, intro- 
duced by Krause et al. [20] was used as long as s was 
positive [Fig. 2(a)]. The discretization of the differential 
equation (4a) is then given by 

CeJi- l/Z.j,k-1/2+~YjCexli-l/Z,j,k-l/2 

= C@yyIi- l/Z,j,k- I/Z (18) 

where 

Cetli- l/Z,j,k- l/Z 

= & ~ei.j,k-ei,j,k-l+ei-l,j,k-ei-I,j,k-ll 

C@xli- l/Z,j,k- l/Z 

CL 
s= 

s 
s(t) dr x sk_ 1,2. 

Tlr- I 

Y(j) i,j+l,k 

i-l,j+l,k-1 
i,j,k 

i-l,j.k-I i,j-l,k 

(b) 1 ij+l,k 

x(i) 
FIG. 2. Finite-difference schemes (E = expansion point). 
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The discretization error is of second order in Ax, Ay and 
At. For numerical stability it must be ensured that 

which for positive .7 is always satisfied. 
The discretization of the differential equation leads 

to a set of simultaneous linear equations for the 
unknowns 0~ r,3,kr .j = 1 n (n denotes a point on the 
edge of the thermal boundary layer) at each position 
xi, sk. The set will have tridiagonal matrix form and can 
be solved recursively making use of the boundary 

conditions and ofpreviously calculated values of 8. The 
local heat transfer was calculated from the temperature 
field by an averaged 3- and it-point formula, as it gave 
the most accurate results in a comparison with 
LevCque’s solution in steady ilow. 

-IOH<,j=,,kl. (19) 

The same formula was used to approximate the 
insulated wall boundary condition. The overall heat 
Aux was determined from the local heat transfer values 
by a simple trapezoidal rule integration. 

The choice of a numerical scheme for the reversed 
shear (s < 0) is not as easy as that for positive shear. One 
possibility is the commonly used zig-zag scheme of 
Krause ez ~11. [20] [Fig. 2(b)]. But its stability condition 

imposes an unrealistic restriction on the stepsize AZ 
because Ax has to be very small at the edges of the film 

(see above). Therefore the following procedure was 
adopted. Far downstream, in the wake, a new 
“boundary condition” was predicted using a newly 
developed 3-level scheme [Fig. Z(c)]. The discretization 
of the differential equation now gives 

COJi+ 1,*.,.!~~ 1 +,rlvj1°.v14 i 1:Z.j.k / z COy,li + 1:Z.j.k 1 
(20) 

where 

1°rlS + tl?.j,k- I 

The discretization error is again of second order and as 
stability condition we obtain from a von Neumann 
stability analysis 

[Scheme (b) could not be used because it has in this 
application four unknown points at Q.] Apparently, 
the restriction on the step Ar seems to be the same as f’or 
scheme (b). However, the new scheme is only used to 
compute a new “boundary condition” in the formei 
wake where a larger Ax can be chosen. The scheme (c) 

needs additional points at a previous time level X .-- 2. 
But as these points are only required at the end of the 
computatjon field the increase in computer storage is 
only small. 

The other temperature values can now easily be 

computed with a backwards facing (turned) scheme (a). 
progressing in the negative x-direction [Fig. 2(d)]. The 

question still to be answered is how far downstream in 
the wake it is necessary to go in order to assess its effect 
on heat transfer in reversed Row. This is discussed next. 

4.1. Zones q/‘depcndence 
The stability restrictions of the chosen linite 

difference approximations can easily be explained 
physically if we adopt Wang’s [21] concept of 
characteristics and subcharacteristics. 

The characteristics of equation (4a) are given by all 
lines normal to the surface; the speed of a temperature 
disturbance in their direction is infinite. By using an 
implicit formulation for the y-direction and solving the 
difference equation for all points yj simultaneously the 
physical condition of infinite speed of diffusion can be 
adequately modelled. Therefore, no stability restriction 

based upon the Ay stepsize c&n occur. 
The subcharacteristics of equation (4a) given by 

(711 

(which describes the projection of the path of a fluid 
particle at fixed height y onto the .Y : plane) can. 
however, impose a restriction on the stepsize Ar. 
Writing equation (21) in difference form we have the 
condition for marginal stability of scheme (c) 

In the case of negative shear this means that a fluid 
particle at fixed height yj which was previously (at TV t) 
at the position xii 1 = xi + Ax is convected backwards 

to the position xi in the time interval AT (Fig. -3)~ 
However, if 

At 

the particle will have passed the position xi and will be 
at some place xj-- As’. Thus, the fluid particle of Y, is 
the one that was previously at x,, , t Ax*. Now the 
temperature of the particle clearly depends on it* 
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‘i ‘it1 X 

FIG. 3. View of the path of a fluid particle in the X-T plane. 

previous temperature, but this cannot be determined 
from the information provided within the numerical 
scheme because the particle’s previous position lies 
outside the covered area. The prediction of Oi,j,k must 
therefore be inaccurate and the numerical solution 
becomes unstable. 

The concept of subcharacteristics can of course also 
be applied to the finite difference schemes (a) and (d). 
But there we always have a known upstream point 
giving the necessary information for calculating the 
new temperatures. Thus, these schemes are stable as 
long as the flow comes from the “upstream end” of the 
scheme. 

The limiting subcharacteristics for the zone of 
dependence are 

xr-x0 = 
s 

T1 
s~mar dr (23a) 

T0 
and 

x1 -x(J = 0. (23b) 

To be able to calculate the heat transfer we have to 
know the initial temperatures of all particles that will be 
convected over the film. If x1 = 1 denotes the end of the 
heat transfer region, and a periodic solution (in the case 
of pulsating flow) can be expected after about 2 
backflow periods, the integration ofequation(23a) over 
all times of negative shear yields the point x,, up to 
which the initial solution has to be calculated. 
Similarly, with x1 = 0 and one interval of negative 
shear, we can determine a point x0 in front of the hot- 
film up to which we must calculate in order to include 
all heated particles that will pass the film again during 
the following period of positive shear. During periods 
of backflow the computation field will decrease by one 
step Ax for each step AZ and cannot be increased during 
periods of s > 0 because of the limiting sub- 
characteristic (23b). 

The numerical procedure was tested in a simple heat 
transfer problem in reversing flow that was solved 
analytically by Pedley [21]. The numerical compu- 
tation was accurate to within three significant figures. 

5. PRESENTATION AND DISCUSSION OF RESULTS 

The time dependent heat transfer for the different 
shear functions is presented in terms of the modified 
Nusselt number Nu* in Figs. 4-9. The quality of the 
hot-film signal is judged by comparing the unsteady 
with the ideal, quasi-steady heat transfer, Nut. 

I I / I I I I 

quasi-steady-, 

1.0 - 

N; 3.5 
t 

0.3 ’ I 

0 rr Jl AE 
2 2 

2n 

WT 

FIG. 4(a). Response of the hot film in non-reversing flow, 
s = 0.5. 

I I ! I I 

:=0.9 1 

0.01 
rr 
2 2* 

WT 

FIG. 4(b). Response of the hot film in non-reversing flow, 
s^ = 0.9. 



PETER KAIPINC 

FIG. 5(a). Comparison with Pedley’s solution [ll] in non- 
reversing pulsatile flow (S = 0.9, 0 = 0.1). 

w:l 

!$09 ’ 

00 I 

0 Jr 
2 

n $ 2n 

UT 

FIG. 5(b). Comparison with Pedley’s solution [11] in non- FIG. 8(a). Response of the hot film in pulsatile reversing flovv, 
reversing pulsatile flow (5 = 0.9, w = 1.0). s^ = 2.0. 

quasf-steady 

FIG. 6. Heat transfer for the decelerated and constant shear. 

FIG. 7. Heat transfer for decelerated flow in comparison with 
Pedley’s results [ll]. 

Nu* 05 

FIG. 8(b). Response of the hot film in pulsatile reversing flow, 
.? = 6.4. 
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FIG. 9(a). Comparison with Pedley’s solution [l l] in reversing 
pulsatile flow, s’ = 2.0. 

FIG. 9(b). Comparison with Pedley’s solution [ll] in reversing 
pulsatile flow, s^ = 9.6. 

5.1. Non-reversing shearjow 

Figures 4(a) and(b) show the results of the numerical 
heat transfer calculations in non-reversing flow for 
different values of the amplitude s^ and the frequency 
parameter w. The pulsations in heat transfer due to the 
unsteady flow field are quite pronounced even for high 
w. But the minimum as well as the maximum value of 
heat transfer are attenuated and have a phase lag in 
comparison with the quasi-steady heat flux. The 
attenuation and the phase lag are strongest for high 
frequencies and high amplitudes ofthe pulsation, as can 
be expected. The attenuation can be expressed by an 
amplitude ratio 

A 
Nu:,, - Nu: 

Rmax = Nu~*_~-Nu,* (24) 

and the phase shift is given by 

(with similar formulae for the minimum). 
Graphs of the variations of A, and 4 with the 

parameters s^ and w are shown in Figs. IO(a), (b), 1 l(a) 
and (b). The distortion of the quasi-steady heat transfer 

curve by thermal inertia effects is more discernible at the 
minimum where convection is small and thermal 
inertia is important than at the maximum where 
convection dominates and the influence of thermal 
inertia is comparatively small. These differences 
between the maxima and minima cannot be detected by 
a first order perturbation solution such as Lighthill’s 

theory [3]. 
For pulsatile flow with the amplitude s^ = 0.5 [Fig. 

4(a)] departures from quasi-steady behaviour are small 
as long as o remains smaller than about 1.25. Then the 
amplitude response A, is accurate to 10% and the 
maximum phase lag is smaller than 22”. With 

I 

0 1 2 3 4 5 

w 

FIG. lo(a). Maximum amplitude response of the hot film. 

ARmin 

li 

0 1 2 3 4 5 

w 

FIG. 10(b). Minimum amplitude response of the hot film. 



60” 90 convection term, solving only the l-dim. heat 
conduction equation. This assumption, however leads 

s^=Z / to an underestimate in heat transfer at times oflow fluid 

Z=6 4 
i/ 

vjelocities. (Pedley matched his two solutions by 

making the “centre of mass” of the temperature profile 

30” 60 

~: 

I: 

4 

continuous during the change : “approximately quasi- 

i 

steady” ” purely diffusive”. A matching for the 
changeover “purely diffusive” “approximately quasi- 

0” 30” 
uake had to he neglected.) 

GO.9 
4 

5 ? lirrW~sirlg ShYU1. Jfo,z _ ._. 
max z=o.s In reversing shear flow the numerical calculations 

show a considerable influence of the thermal wake on 
heat transfer. For the decelerated and constant shear 

A ! 

steady”couldnot be made as the”approximately quasi- 
steady” solution is independent of initial temperatures 
Thus. in reversing flow. the influcncc of the thermal 

0” / i I / (Fig. 6) the backflow 

012345 ambient lhnd temperature) reduces the Nusselt number 
significantly. After 4 time units 7 of constant shear the 

W influence of thermal inertia due to previous changes in 

FIG. 1 l(a). Maximum phase response of the hot film the fluid velocity will be damped out but still the heat 
transfer is reduced by 8”,,. This must be due to the 

,04, 90’T-----7 
thermal wake which remains at a fairly high 
temperature for a long distance [as can also be seen 
from the steady wake solution, equation (6)]. 

In the case of uniformly decelerated shear flow 
[equation (13)] the same effect can be seen. however, 
combined with thermal inertia effects (Fig. 7). For 
comparison. Pedley’s approximate solution is plotted 
in the same figure as well as the quasi-steady 
approximation. The different influences on heat 
transfer can easily be explained by comparing these 
curv’es. For positive shear (r < -- 1.5) Nu* is higher 
than the quasi-steady heat flux A’$ owing to the 
decelerating influence of the thermal inertia. This is 
reflected by both the numerical and the approximate 
solution and their agreement is good. For low sheal 
rates(positiveand negative)thecurvesdonot followthc 
quasi-steady one and remain positive. The neglect of 
convection in Pedley’s theory, however, leads to an 

0 1 2 3 4 5 
underestimate in heat transfer and there is a time lag 
between the approximate and the numerical solution. 

W For high negative shear (7 > 1.5) Pedley’s solution 
cannot detect the changes introduced by the backflow 

FIG. 1 l(b). Minimum phase response of the hot film of the thermal wake but it accounts for the inertial 
effects. Thus. the difference between the quasi-steady 

increasing 0, the departures from quasi-steady and the approximate solution reflects the influence of 

behaviour grow rapidly. Similarly, an increase in thermal inertia whereas the further difference to the 

amplitude S soon leads to a deterioration ofthe hot-film numerical curv’e shows the influence of the thermal 

signal. So, for example, the amplitude response for wake. The results for pulsatile flow with shear reversal 

.< = 0.9 [Fig. 4(b)] is lo:< accurate only as long as the are presented in Figs. 8(a), (h), 9(a) and (b). For the 

frequency parameter does not exceed 0.4. amplitude ,\: = 2 [Fig. S(a)] the maximum value of heat 

In Figs. 5(a) and (b) the numerical results are transfer is well represented and the amplitude response 

compared with the heat transfer calculations of Pedley for the maximum is good although there is a phase lag 

[ll]. His theory gives very accurate results for high between heat transfer and shear variation. Only for 

shear rates (Pedley’s “approximately quasi-steady high frequencies (CL) 2 2) the response of the maximum 

regime”) although the slight phase lag cannot be is down by more than lo’?;. The minimum response in 

predicted. In the range of low shear rates Pedley reversing flow has to be redefined because the hot-film 

assumes a “purely diffusive regime” and neglects the signal does not show the change of the flow direction 

s4 PEEK KAIPING 
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(change of sign) : 

ARmin = 
Nu;,, + Nuf 

Nu;,,,~, + Nut' 
(26) 

This amplitude response is in general better in reversing 
than in non-reversing flow because the hot-film signal 
remains positive and the thermal inertia keeps the heat 

flux high, reducing the decrease in heat transfer due to 
the backflow of the thermal wake. Thus, the relative 
error in the amplitude response remains small (also 
because ofthe high amplitude). However, the sensitivity 
of the hot film to changes in the flow field is bad during 
the period of reversed shear : the instantaneous value of 

the wall shear can only be predicted inaccurately from 
the measured heat transfer, and for high frequencies 
(w 2 2) the hot-film signal for the reversed shear is 

completely smeared out (see curve for w = 5) making 
accurate measurements impossible. 

Similar behaviour occurs for s^ = 6.4 [Fig. 8(b)] but 
here the quality of the hot-film response is better than 
for s^ = 2. The phase difference between flow pulse and 
heat transfer is reduced and the heat transfer for the 

reversed shear follows the quasi-steady heat flux 
slightly better. Though these improvements are 
striking at first glance (one would expect a worse 
behaviour because of the rapid changes in wall shear) 
they can easily be explained as follows. The absolute 
values of the shear function are high most of the time 
(for positive as well as negative shear); thus, the thermal 
disturbances (inertia, wake) are small and convection 

dominates. 
The maximum heat transfer, however, is changed by 

heated fluid which was convected in front of the film 
during backllow and now passes the film again 
reducing its heat output. This does not happen for s^ = 2 
where at times of maximum shear all heated fluid is 
already washed away. Therefore the hot-film signal 

quality is, in the neighbourhood of the maximum shear 
rate, worse for high amplitudes than for low 

amplitudes. 
Computations were made only up to the third flow 

reversal. The curves shown represent the last period 
(from the beginning of the second up to the beginning of 
the third backflow period) of these calculations. In 
order to present the plots with the argument of the flow 
pulse (wr = 0 to wr = 27~) the last part of the curve was 
cut off and joined at the front (before the second shear 
reversal). The small kink in the very unsteady curve 
s^ = 6.4/w = 5 at the joining point shows that the heat 
transfer oscillations were not quite periodic at that time 
whereas the smoothness ofthe other curves indicate the 
fact that all initial transients were completely damped 
out. 

Pedley’s [ 1 l] approximate solution gives similar 
wave forms as the numerical results presented here 
[Figs. 9(a) and (b)] but these have a significant phase 
advance. A phase difference with quantitatively good 
agreement was also found by Pedley in a comparison of 
his results with experimental data [13,14] and the most 
probablecause was thought tooriginatefrom the three- 

dimensionality of the flow and temperature field. 
Although the present work cannot explain the phase 

lag of Pedley’s solution completely, and 3-dim. effects 

must still be considered important (the phase lag 
between Pedley’s solution and experiments is about 
7~14; the one between his solution and the numerical 

results is at most 7r/8, however) there seem to be 
inaccurate predictions with Pedley’s theory because of 
its strong simplifications. The good quantitative 
agreement might occur because two counteractive 

effects (the convection at low shear rates and backflow 
of the wake) were omitted which will, at least partially, 
cancel. Thus, their neglect does not introduce large 

errors at times of low shear. In the range of higher shear 
the neglect of the increase in ambient fluid temperature 
due to the thermal wake leads to an overestimate ofheat 

transfer in Pedley’s solution. 
Figures 10(a), (b) and 1 l(a), (b) show the curves of the 

characteristic quantities of a hot-film signal, the 
amplitude and the phase response, for different 

amplitudes as a function of the frequency parameter w. 
They were plotted from the calculated data for w = 0.2, 
0.5,1,2,3.5 and 5. The exact location and the values of 
the maxima and minima were calculated from the 
discrete numerical points [9” (non-reversing) and 
about 2” (reversing) apart] by a cubic spline 

interpolation for the five points next to the extrema. 

5.3. Time-averaged heat transfer 
The question of whether a superimposed oscillation 

on a steady stream enhances heat or mass transfer when 
the average flow rate is held constant will be discussed 
briefly as it is related to this investigation. The time- 
averaged heat transfer 

Nu* =& 
i 

2n 

Nu* d(wr) (27) 
0 

was evaluated by a Simpson rule integration of the 
instantaneous heat transfer values. In flow without 

reversal [Fig. 12(a)] the time averaged heat transfer is 
always decreased as could also be shown by McMichael 
and Hellums [23]. The reduction in heat transfer is the 
larger the smaller the frequency and the higher the 

amplitude of the pulsation. For high frequencies the 
calculated averaged heat transfer approaches the 
steady value Nu:. 

Calculations of the time averaged heat transfer in 

reversing pulsatile flow exhibit a different behaviour 
which is strongly dependent on amplitude [Fig. 12(b)]. 

If the backflow remains small the ratio Nu*/Nu$ 
remains smaller than one. For increasing frequency it 
first drops from the quasi-steady value owing to the 
influence ofthe wake but increases then again owing to 
thermal inertia to approach finally the value one. 

For high amplitudes there is an increase in time 
averaged heat transfer but the effect ofthe thermal wake 
as well as the thermal inertia counteract the 
improvement of heat flux such that best values are 
obtained for low frequencies. 
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FIG. 12(a). Time averaged heat flux in non-reversing pulsating 
flow. 

FIG. 12(b). Time averaged heat flux in reversing pulsating flow. 

0.9 - 
0 12 3 4 5 

w 

The following general results can be obtained from 

Figs. 12(a) and (b) : an enhancement of time averaged 
heat transfer is only possible in flow with reversal and 

can only be attained if the quasi-steady heat flux (for the 
same flow field) also shows an enhancement. The 
improvement of heat transfer in flow that fulfils the 
conditions is the better the smaller the pulse frequency 
and the higher the amplitude. For very high frequencies 

the ratio Nu*/Nu, approaches one in all cases. 
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CONVECTION THERMIQUE FORCEE ET VARIABLE AUTOUR D’UN FILM CHAUD DANS 
UN ECOULEMENT CISAILLANT AVEC OU SANS RETOUR 

R&mm-Le flux thermique a partir d’un film chaud a temperature constante, sur une surface plane isolQ, est 
~tudi~num~~qu~entensupposantquelath~oriedecouchelimitethe~iqueestapplicablepartouretBtout 

instant. Ie champ d’ &coulement est d&it par (a) une pulsation ou (b) une d&c&ration h&ire d’un 
ecoulement cisaihant bidimen~onnel. Pour les grandes frequenoes de portion Ie transfert the~ique calcult 
sBcartefortementdeIavaleurquasi-pe~anente.DansI’~ouIementderetour,onpeutconstateruneinfluence 
considerable du sillage thermique. Des calculs du flux thermique moyen dans le temps montrent qu’un 
accroissement du transfert dQ a la superposition des oscillations peut se produire seulement en Bcoulement de 

retour. 

INSTATION~RER W~RME~BERGANG DURCH ERZ~GENE KON~K~ON VON 
EINEM HEISSFILM IN SCHERSTROMUNGEN OHNE UND MIT RICHTUNGSUMKEHR 

Zusammenfassung-Die Wlrmeabgabe eines Konstant-Temperatur-Heigfilms, der glatt in eine ebene, 
isoherende Oberfllche eingebaut ist, wird numerisch unter der Annahme untersucht, daB die thermischen 
Grenzschichtvereinfachungen iiberall und zu allen Zeiten giiltig sind. Das Stromungsfeld wird durch (a) eine 
pulsierende oder (b) eine gleichmiil3ig verz8gerte, ebene Scherstriimung beschrieben. Der berechnete, 
instation~re W~~e~~rgang weicht fiir hohe ~lsationsf~qu~n stark vom q~sistation~ren Wert ab. In 
Stromungen mit Richtungsumkher wird ein erhebiicher Einflufi des thermischen Nachlaufs deutlich. 
Berechnungen des zeithch gemittelten Warmeiibergangs zeigen, dab nur in Striimungen mit 

Richtungswechsel eine Verbesserung der Warmeabgahe durch aufgepragte Oszillationen moglich ist. 

HE~A4~OHAPHbI~ TEI-IJIOIIEPEHOC BbIH~~EHHO~ KOHBEK~HE~ OT 
HArPETO~ HJIEHKW HPH ~P~MOM H 06PATHOM TE~EH~~ Bfi3KOfi X~K~~ 

A~noTau~~s-ffpo~e~eHowcne~~oewccnenoBaHrrenepeHoca Tenna or HarpeToil nnemcn noc~orneok 

Tewreparypbt, pacnonoxeHHoii na noeepxHocTH nnocwok H3OJIHpyEOLI@ cTeHKti, 6 npennonomeiiHH, 

YTO Teopur rennosoro norpaHaYHor0 cnon npHMeHHMa B mo6ok TOYYe H B nlodoii MoMeHT 
epeh9emi. lloneTeqeiisn 0nHcbrnaeTca cnoMombro(a)nynbcHpytomeromra(6)nHriei4Ho3amennarome- 

rOCR noTOYa C RORe~QibIM rpW&ieHTOM CKOPOCTH. nPH BMCOKHX 'IaCTOTaX nynbG%uHii paCCWTaHHbte 

3Ha9eHHR H~TaUUOHapHOrO TCRJIOBO~O nOTOEa 3Ha‘tUTeJrbHO OTnH'raEOTCX OT K~~~UHOHapn~X 

3HaveHriii. IIprf of5paTHoM Te4eHiin na6nmAaeTca cym~~HH~ Bn~~Hne rennonoro enem. Pacqerbt 
yCpeAHeHHMXn0 BPeMeHH BeEHWH TenJtOBOrOnOTOKa uOKa3btBaEOT,9TO HHTeHCHl$HEaIIWI( TeuJlOne~- 

HOGi 38 C'IeTnyJlbCWHfi B03MO~HaTOJlbRO IIpH o6paTtroM TeqeHHsi. 


